Free-standing graphene at atomic resolution.

نویسندگان

  • Mhairi H Gass
  • Ursel Bangert
  • Andrew L Bleloch
  • Peng Wang
  • Rahul R Nair
  • A K Geim
چکیده

Research interest in graphene, a two-dimensional crystal consisting of a single atomic plane of carbon atoms, has been driven by its extraordinary properties, including charge carriers that mimic ultra-relativistic elementary particles. Moreover, graphene exhibits ballistic electron transport on the submicrometre scale, even at room temperature, which has allowed the demonstration of graphene-based field-effect transistors and the observation of a room-temperature quantum Hall effect. Here we confirm the presence of free-standing, single-layer graphene with directly interpretable atomic-resolution imaging combined with the spatially resolved study of both the pi --> pi* transition and the pi + sigma plasmon. We also present atomic-scale observations of the morphology of free-standing graphene and explore the role of microstructural peculiarities that affect the stability of the sheets. We also follow the evolution and interaction of point defects and suggest a mechanism by which they form ring defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single adatom dynamics at monatomic steps of free-standing few-layer reduced graphene

Steps and their associated adatoms extensively exist and play prominent roles in affecting surface properties of materials. Such impacts should be especially pronounced in two-dimensional, atomically-thin membranes like graphene. However, how single adatom behaves at monatomic steps of few-layer graphene is still illusive. Here, we report dynamics of individual adatom at monatomic steps of free...

متن کامل

Electron beam controlled covalent attachment of small organic molecules to graphene.

The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C=C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair directio...

متن کامل

Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature.

We show that by operating a scanning transmission electron microscope (STEM) with a 0.1 nm 300 kV electron beam, one can sculpt free-standing monolayer graphene with close-to-atomic precision at 600 °C. The same electron beam that is used for destructive sculpting can be used to image the sculpted monolayer graphene nondestructively. For imaging, a scanning dwell time is used that is about 1000...

متن کامل

Spatially-resolved structure and electronic properties of graphene on polycrystalline Ni.

We have used in situ low-energy electron microscopy (LEEM) to correlate the atomic and electronic structure of graphene films on polycrystalline Ni with nm-scale spatial resolution. Spatially resolved electron scattering measurements show that graphene monolayers formed by carbon segregation do not support the π-plasmon of graphene, indicating strong covalent bonding to the Ni. Graphene bilayer...

متن کامل

Growth of dome-shaped carbon nanoislands on Ir(111): the intermediate between carbidic clusters and quasi-free-standing graphene.

By combining high-resolution photoelectron spectroscopy and ab initio calculations, we show that carbon nanoislands formed during the growth of a long-range ordered graphene layer on Ir(111) assume a peculiar domelike shape. The understanding of the unusual growth mechanism of these C clusters, which represent an intermediate phase between the strongly coupled carbidic carbon and a quasi-free-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 3 11  شماره 

صفحات  -

تاریخ انتشار 2008